Hedonics and Sorting

Alvin Murphy

Arizona State University

UEA Summer School, 2025

July 22, 2025

Definitions

- Hedonics: Anything involving a function relating amenities to prices
- Sorting: Heterogeneous households demanding different levels of amenities

Motivation

- Why study hedonics and sorting?
- Applications in urban economics, housing policy, environmental economics
- Benefits:
 - Economically rich
 - Econometrically tractable
 - Policy relevant
- Extremely popular:
 - Rosen (1974) has \approx 17,000 citations
 - Tiebout (1956) has \approx 26,000 citations

General Research Framework

- Define the question (e.g., model)
- Oetermine identification
- Stimate

Outline

- Preliminaries
- Question(s) of Interest
- Hedonic Model of Sorting
- Best Practices and Pitfalls
- Non-marginal Analysis
- Extensions

Outline

- Preliminaries
- Question(s) of Interest
- 4 Hedonic Model of Sorting
- Best Practices and Pitfalls
- Non-marginal Analysis
- 6 Extensions

July 22, 2025

Alvin Murphy Hedonics and Sorting

Predictive Relationship Between Amenities and Price

- $P = g(Z; \gamma) + \epsilon$
 - Linear form: $P = \gamma_0 + \gamma_1 Z + \epsilon$
- ullet Regression parameters (γ) describe prediction, not causation
- Identification is free, but question is limited
- Useful for property assessment
 - In fact, may want predictive, and not causal, effect of Z on P

Price Indices

- Early work focused on constructing indices
 - Griliches (1961)
- Unclear whether want predictive or causal effects
- Used to create house price indices
 - Laspeyres, Paasche, Fisher

Causal Relationship Between Amenities and Price

- $P = f(Z; \beta) + u$
 - Linear form: $P = \beta_0 + \beta_1 Z + u$
- Interesting:
 - Practitioner
 - Policy maker
 - Provide information
 - Chetty et al. (2025): Opportunity Atlas
 - Bishop, Kuminoff, Mathes, Murphy (2024): price of mortality

Causal Relationship Between Amenities and Price

- $P = f(Z; \beta) + u$
 - Linear form: $P = \beta_0 + \beta_1 Z + u$
- Interesting:
 - Practitioner
 - Policy maker
 - Provide information
 - Chetty et al. (2025): Opportunity Atlas
 - Bishop, Kuminoff, Mathes, Murphy (2024): price of mortality
 - Infer demand / welfare analysis

July 22, 2025

Inferring Demand

Two reasons to be optimistic that we can learn something about demand:

- Prices determined by demand and supply
- Atomistic agents take price as fixed and optimize given their preferences

Outline

- Preliminaries
- Question(s) of Interest
- 4 Hedonic Model of Sorting
- Best Practices and Pitfalls
- Non-marginal Analysis
- 6 Extensions

Alvin Murphy

Question(s) of Interest

What is the key question of interest?

- Willingness to pay for marginal changes?
 - i.e., demand/marginal willingness to pay at point of consumption
- Willingness to pay for non-marginal changes?
 - i.e., demand/marginal willingness to pay function

- For example:
 - Household i consumes 10 units of amenity Z
 - MWTP for household i at Z=10 is \$50, i.e. MWTP(10) = \$50
- Household i would be willing to pay \$50 to increase Z from 10 to 11
 - where 1 unit is a marginal change

- What would be the willingness to pay to increase Z from 10 to 15?
 - Corresponds to area under MWTP function
 - Need to know the MWTP function

- Obvious questions for us:
- What are benefits and costs of identifying/estimating
 - $MWTP(Z_i^*)$
 - MWTP(Z)

- It is first worth thinking about where the price function comes from
 - Rosen (1974)
 - Diagrams
 - Algebra

July 22, 2025

Outline

- Preliminaries
- Question(s) of Interest
- Hedonic Model of Sorting
- Best Practices and Pitfalls
- Non-marginal Analysis
- 6 Extensions

But first some background on what is a Hedonic Model?

- Model of differentiated products
- Price reflects bundle of characteristics
- Historical origins:
 - Waugh (1929), Court (1939), Griliches (1961)
 - Lancaster (1966): utility over characteristics
 - Rosen (1974): equilibrium of bid and offer functions

990

July 22, 2025

- i = 1, ..., N indexes households
- House characteristics P, Z, and ϵ .
 - P: price
 - Z: amenity of interest
 - ullet ϵ : unobservable housing and neighborhood amenities.
- Individual characteristics
 - 1: Income
 - X: observable individual characteristics,
 - ν : unobservable preference for Z

- Households take the hedonic price function as given.
- Households choose Z to maximize utility
- Household preferences are determined by a vector of observed household characteristics, X, and unobserved taste shifters, ν .
- ullet X and u are typically assumed to be orthogonal in the hedonic model

28

ullet The price function is known up to the parameter vector eta

$$P = P(Z_i, \epsilon_i; \beta)$$

ullet The utility function is known up to the parameter vector lpha

$$U = U(Z_i, \epsilon_i, C_i, X_i, \nu_i; \alpha)$$

• Budget constraint with price of numeraire consumption normalized to one.

$$I_i \geq P(Z_i, \epsilon_i; \beta) + C_i$$

• By definition, the MWTP function is slope of indifference curve (at optimum):

$$\frac{\partial U_i/\partial Z}{\partial U_i/\partial C} \equiv MWTP(Z_i; X_i, \alpha, \nu_i)$$

Maximizing utility yields first order condition:

$$\partial P_i/\partial Z^* = \frac{\partial U_i/\partial Z^*}{\partial U_i/\partial C^*}$$

• Price gradient at point of consumption equals MWTP at point of consumption.

Outline

- Preliminaries
- Question(s) of Interest
- 4 Hedonic Model of Sorting
- Best Practices and Pitfalls
- Non-marginal Analysis
- 6 Extensions

Alvin Murphy

Estimating Causal Effect of Amenity on Price

- Recap: If P(Z) is known, then $MWTP(Z_i^*) = P'(Z_i^*)$
 - Rosen First Stage
- Ignore issues of estimating full MWTP function for now
 - Rosen Second Stage
- P(Z) is a causal function
- Focus on econometric and economic issues in estimating P(Z)

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● のQで

Best Practices and Pitfalls - Market Definition

- Market definition
- Data Collection
- Functional Form
- Controls
- Omitted Variable Bias
- Diff-in-Diff
- Average MWTP
- Bishop et al. (2020), Yinger and Nguyen-Hoang (2015)

34

Best Practices and Pitfalls – Market Definition

- Should be defined so that "law of one price function" holds
 - Identical houses should sell for same price
- Single metro at single point
- Beware other margins of adjustment
 - Moving costs, wages, taxes
 - Single metro should ameliorate this
- Longer time periods problematic if function time-varying
- Careful use of econometric flexibility across space/time may also be used
 - Still somewhat difficult to justify

Best Practices and Pitfalls – Data Collection

- Gold standard is transactions data
 - Coverage not fully national
 - Merge in buyer characteristics (HMDA merge, BMMT (2016))
- Method of assigning amenity to house is key
 - Frequently difficult
- Predicted values may introduce non-random measurement error
 - e.g. Census self-reports, appraisals
- Spatially aggregated data have unknown mapping to a hedonic price function
 - e.g. Means or medians

36

Best Practices and Pitfalls – Functional Form

- Shape of price function depends on market primitives
- EHN (2004) show price gradients are generically nonlinear
- Ideally, price function would be nonparametric
 - As usual, non-parametric approaches comes with costs
 - Bajari and Kahn (2005) estimate a "flexible" local-linear function
- Linear price functions should be avoided
 - Imply limited forms of sorting or strong supply conditions
 - Supply may be considered fixed in many urban settings
 - Sometimes justified as estimating average gradient/MWTP

Best Practices and Pitfalls - Controls

- Ideally like to control for many other amenities
 - Standard selection-on-observables reasons
- Tension with desire for flexibility
 - Clapp (2004) and BT(2019) use Robinson-style semi-parametric approaches
- Buyer attributes should not be included
 - Want to estimate price function, not bid function
 - Tests of discrimination are a separate question
- What about neighborhood demographics, e.g., average neighborhood income?

Best Practices and Pitfalls - OMV

- Kuminoff, Parmeter, Pope (2010) recommend using fine spatial fixed effects
 - Yinger and Nguyen-Hoang (2015) recommend caution
- Matching (e.g. Walls et al. 2017)
- Boundary discontinuity (e.g. Black 1999)
- Instrumental variables (e.g. Chay and Greenstone 2005)
- Repeat sales (e.g. Davis 2004)

Best Practices and Pitfalls - Diff-in-Diff

• Diff-in-Diff (or first difference) requires stability of price function

Period 1 price function:
$$P_1 = \beta_1 Z_1 + u_1$$

Period 2 price function:
$$P_2 = \beta_2 Z_2 + u_2$$

First-difference:
$$\Delta P = \beta_2 Z_2 - \beta_1 Z_1 + u_2 - u_1$$

Capitalization model:
$$\Delta P = \phi \Delta Z + \Delta u$$

- What does ϕ represent when $\beta_1 \neq \beta_2$?
- Kuminoff & Pope (2014) show amenity shocks generate temporal instability

Best Practices and Pitfalls - Average MWTP

- Interpretation of linear price function as average MWTP
- Why do it?
- Econometrially wrong
 - OLS yields BLP of price function, not BCP of derivative
 - Quadratic e.g. $\beta_1 + 2\beta_2 \bar{Z} \neq Cov(P, Z)/Var(Z)$
- Average MWTP may not be an interesting object
 - May not be policy relevant
 - Cannot be compared across scenarios

Outline

- Preliminaries
- Question(s) of Interest
- 4 Hedonic Model of Sorting
- Best Practices and Pitfalls
- Non-marginal Analysis
- Extensions

Why MWTP Function Matters

- Needed to evaluate non-marginal policy changes
- Use in welfare analysis and cost-benefit analysis

Hedonics – Parameterized Model

• For simplicity, parameterize quasi-linear utility as:

$$U = \alpha_{0,j} + \alpha_{1,j} Z_{i,j} + \frac{1}{2} \alpha_{2,j} Z_{i,j}^2 + \alpha_{3,j} X_{i,j} Z_{i,j} + \nu_{i,j} Z_{i,j} + (I_{i,j} - P(Z_{i,j}, \epsilon_{i,j}; \beta_j))$$

where j indexes market (e.g., city or year)

$$\alpha_{1,j} + \alpha_{2,j} Z_{i,j} + \alpha_{3,j} X_{i,j} + \nu_{i,j} \equiv MWTP(Z_{i,j}; X_{i,j}, \alpha_j, \nu_{i,j})$$

• The FOC for a household's optimal choice of Z is then given by:

$$P'(Z_{i,j};\beta_j) = \alpha_{1,j} + \alpha_{2,j}Z_{i,j} + \alpha_{3,j}X_{i,j} + \nu_{i,j}$$

 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 2
 2 ∨ 2 ○

 Alvin Murphy
 Hedonics and Sorting
 July 22, 2025

 45

- Traditional Rosen (1974) estimation strategy
 - First isolate $P'(Z; \beta)$ as the dependent variable
 - Replace $P'(Z; \beta)$ with an estimate from a first-stage price-function regression
 - ullet Estimate the resulting equation in a 2^{nd} stage, treating u as the regression error:

$$P'(Z_{i,j}; \hat{\beta}_j) = \alpha_{1,j} + \alpha_{2,j} Z_{i,j} + \alpha_{3,j} X_{i,j} + \nu_{i,j}$$

$$P'(Z_{i,j}; \hat{\beta}_j) = \alpha_{1,j} + \alpha_{2,j} Z_{i,j} + \alpha_{3,j} X_{i,j} + \nu_{i,j}$$

- This equation effectively puts Z on the LHS and the RHS
- What is $\nu_{i,j}$?
- Epple(1987) Bartik(1987)
- $\nu_{i,j}$ is a preference shock that shifts $Z_{i,j}$, therefore it also shifts $P'(Z_{i,j}; \beta_j)$
- Therefore, $\hat{\alpha}_{2,j}$ is inconsistent

Simple Approaches to Estimating MWTP

- Assume slope = 0
 - Flat MWTP curve hard to justify
 - However, MWTP can't slope upwards, so bounds welfare
- Assume constant elasticity of 1
 - Bajari-Benkard-Kahn
 - Seems arbitrary, but Cobb Douglas hardly a radical assumption

Estimating MWTP function

- Stable preferences across markets
 - Bartik (1987), Zabel and Kiel (2000)
- Stable preferences across time
 - Bishop and Timmins (2018), Banzhaf (2020)
- Assume constant elasticity
 - Yinger (2015a,b)
- Separability in MWTP function
 - Ekelend, Heckman, Neshim (2004), Bishop & Timmins (2019)

Estimating MWTP function

- IV: Find a variable that shifts $Z_{i,j}$ but is uncorrelated with $\nu_{i,j}$
- Market dummies may work if the supply-side differs by market
 - Bartik (1987), Zabel and Kiel (2000)
- Also need an exclusion restriction
 - Cross market homogeneity restriction

$$MWTP(Z_{i,j}; X_{i,j}, \alpha_{j}, \nu_{i,j}) = \alpha_{1,j} + \alpha_{2,j} Z_{i,j} + \alpha_{3,j} X_{i,j} + \nu_{i,j}$$

$$MWTP(Z_{i,j}; X_{i,j}, \alpha_{j}, \nu_{i,j}) = \alpha_{1} + \alpha_{2} Z_{i,j} + \alpha_{3} X_{i,j} + \nu_{i,j}$$

- Need to justify IV
- What about sorting?
- Markets could be geographic- or time-based
 - Kuminoff and Pope (2012) discuss using time as market

Hedonics – Identification

- Many assumed that inconsistent $\hat{\alpha}_{2,j}$ implies $\alpha_{2,j}$ is unidentified in a single market.
- However, this is not how identification works
- Ekeland, Heckman, and Nesheim (2004)
- "Issues of identification are confused with issues of estimation."

Hedonics – Identification

- Bishop and Timmins (2019)
 - "In the ... hedonic model, there is no fundamental endogeneity problem"
 - "households take the hedonic price function as given and choose Z to maximize utility based on their individual preferences."
 - "As ν and X are typically assumed to be orthogonal in the hedonic model, we are left with a familiar econometric modeling environment"
 - "An endogenous outcome variable, Z, which is a function of a vector of exogenous variables, X, and an econometric error, ν ."

Hedonics - Identification

- So, need to return to issue of identification.
- Begin with <u>over</u>-simplified model where $P'(Z_{i,j}; \beta) = \beta_{1,j} + \beta_{2,j} Z_{i,j}$
- FOC:

$$\alpha_{1,j} + \alpha_{2,j} Z_{i,j} + \alpha_{3,j} X_{i,j} + \nu_{i,j} - \beta_{1,j} - \beta_{2,j} Z_{i,j} = 0$$

• Solve for *Z*:

$$Z_{i,j} = \left(\frac{\alpha_{1,j} - \beta_{1,j}}{\beta_{2,j} - \alpha_{2,j}}\right) + \left(\frac{\alpha_{3,j}}{\beta_{2,j} - \alpha_{2,j}}\right) X_{i,j} + \left(\frac{1}{\beta_{2,j} - \alpha_{2,j}}\right) \nu_{i,j}$$

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ りへで

Hedonics – Identification

$$Z_{i,j} = \underbrace{(\frac{\alpha_{1,j} - \widehat{\beta_{1,j}}}{\widehat{\beta_{2,j}} - \alpha_{2,j}})}_{\theta_{0,j}} + \underbrace{(\frac{\alpha_{3,j}}{\widehat{\beta_{2,j}} - \alpha_{2,j}})}_{\theta_{1,j}} X_{i,j} + \underbrace{(\frac{1}{\widehat{\beta_{2,j}} - \alpha_{2,j}})\nu_{i,j}}_{u_{i,j}}$$

- Structural parameters: $\{\alpha_{1,j}, \alpha_{2,j}, \alpha_{3,j}, \sigma_j\}$
- Reduced-form parameters $\{\theta_{0,j}, \theta_{1,j}, \sigma_{u,j}\}$
- Model is unidentified

Hedonics – Multi-Market Identification

$$Z_{i,j} = \underbrace{\left(\frac{\alpha_{1,j} - \widehat{\beta_{1,j}}}{\widehat{\beta_{2,j}} - \alpha_{2,j}}\right)}_{\theta_{0,j}} + \underbrace{\left(\frac{\alpha_{3,j}}{\widehat{\beta_{2,j}} - \alpha_{2,j}}\right)}_{\theta_{1,j}} X_{i,j} + \underbrace{\left(\frac{1}{\widehat{\beta_{2,j}} - \alpha_{2,j}}\right)\nu_{i,j}}_{u_{i,j}}$$

- Make cross market restrictions
- E.g. $\{\alpha_{1,j}, \alpha_{2,j}, \alpha_{3,j}, \sigma_j\} = \{\alpha_1, \alpha_2, \alpha_3, \sigma\}$ (over-identification)
- Reduced form parameters will still vary by market (if $\hat{\beta}$ varies by market)
- Overall \bar{Z} , Cov(Z,X) and Var(Z) will identify α_1 , α_3 , σ
- Cross-market variation in \bar{Z}_j , $Cov(Z_j, X_j)$, and $Var(Z_j)$ will identify α_2

Hedonics – Single-Market Identification

- $\alpha_{1,j}$, $\alpha_{2,j}$, $\alpha_{3,j}$, σ_j not identified if $P'(Z_{i,j};\beta) = \beta_{1,j} + \beta_{2,j}Z_{i,j}$
- Ekeland, Heckman, and Nesheim (2004): gradient unlikely to be linear
- EHN prove identification when $P'(Z_{i,j}; \beta)$ is non-linear.
 - given assumptions about MWTP
- Additive separability of MWTP in $X_{i,j}$ and $\nu_{i,j}$ is sufficient

Hedonics – Single-Market Identification

- For example: $MWTP(Z_{i,j}; X_{i,j}, \alpha, \nu_{i,j}) = \alpha_{1,j} + \alpha_{2,j} Z_{i,j} + \alpha_{3,j} X_{i,j} + \nu_{i,j}$
- $P'(Z_{i,j}; \beta)$ is non-linear
- If MWTP is a linear function of X (by assumption), Z will still be a non-linear function of X. Nature of non-linearity identifies α_2 .
- If $\nu_{i,j}$ is symmetric, $Z_{i,j}$ is not.
- ullet Extent of asymmetry of z identifies slope of MWTP, α_2

<ロ > < 回 > < 回 > < 亘 > < 亘 > □ > ○ □ < つ < ○ ○

Hedonics – Estimating MWTP Function

- EHN show how to estimate MWTP given additive separability assumptions
 - General and elegant, but complicated
- BT show ML is straightforward given parameterization of MWTP
 - $\alpha_{1,j} + \alpha_2 Z_{i,j} + \alpha_{3,j} X_{i,j} + \nu_{i,j} \equiv MWTP(Z_{i,j}; X_{i,j}, \alpha, \nu_{i,j})$
- Don't use $P'(Z_{i,j}; \hat{\beta}_j) = \alpha_{1,j} + \alpha_2 Z_{i,j} + \alpha_{3,j} X_{i,j} + \nu_{i,j}$ as estimating equation
- Use MLE using $f(Z|X, \alpha, \sigma)$

Hedonics – Estimating MWTP Function

- Generally, no closed-form for Z
- Solve for $\nu_{i,j}$: $\nu_{i,j} = P'(Z_{i,j}; \hat{\beta}_j) \alpha_{1,j} \alpha_2 Z_{i,j} \alpha_{3,j} X_{i,j}$
- Assume $\nu \sim N(0, \sigma^2)$
- Density of Z is given by: $\frac{1}{\sigma\sqrt{2\pi}}\exp\{-\frac{1}{2\sigma^2}(\nu_{i,j}(\alpha))^2\}\left|\frac{\partial\nu_{i,j}(\alpha)}{\partial Z_{i,j}}\right|$
- where the Jacobian determinant for the change of variables is given by:

$$\left| \frac{\partial \nu_{i,j}(\alpha)}{\partial Z_{i,j}} \right| = |P''(Z_{i,j}; \widehat{\beta}_j) - \alpha_2|$$

- Choose, $\alpha_{1,j}, \alpha_2, \alpha_{3,j}, \sigma$ to max likelihood
 - Treating $\hat{\beta}$ as known data from a first stage

Hedonics – Estimating MWTP Function

- Potentially complicated non-linear optimization
- Dimensionality of $\alpha_{1,i}, \alpha_{3,i}$ potentially quite large
- BT insight is that one can work with a concentrated likelihood.
- For a given $\hat{\alpha}_2$ there is a closed-form solution to finding the likelihood minimizing values of $\hat{\alpha}_{1,j}, \hat{\alpha}_{3,j}, \hat{\sigma}$
- Very fast!

Application

- Bishop and Timmins (2019) estimate WTP for non-marginal changes in crime
- Areas experienced both non-marginal increases or deceases in crime
- The first stage involves estimating $P(Z_{i,j}, \epsilon_{i,j}; \beta_j)$ with a non-parametric estimator (with census tract fixed effects)

Figure: Results - Housing Price Functions by Year, $P_t(Z_{i,t})$

Figure: Results - Hedonic Gradients by Year, $P'_t(Z_{i,t})$

Figure: Results - Second Derivatives of Price by Year, $P''_t(Z_{i,t})$

Figure: Distribution of One-Year Crime Rate Changes for 1999 Buyers

WTP for Non-Marginal Increases in Violent Crime

68

BT Application – WTP for Non-Marginal Changes

	Buyers	with Redu	uctions	Buyers with Increases		
	(n=24,791)			(n = 12,900)		
	Average	25th %	75th %	Average	25th %	75th %
	WTP	WTP	WTP	WTP	WTP	WTP
Likelihood Based	652	294	917	-1710	-1828	-290
Rosen	878	309	1113	-1147	-1501	-281
Horizontal	858	308	1099	-1194	-1537	-282

July 22, 2025

BT Application – WTP for Non-Marginal Changes

	Buyers with Reductions			Buyers with Increases		
	(n=24,791)			(n=12,900)		
	Average	25th %	75th %	Average	25th %	75th %
	WTP	WTP	WTP	WTP	WTP	WTP
Likelihood Based	652	294	917	-1710	-1828	-290
Rosen	878	309	1113	-1147	-1501	-281
Horizontal	858	308	1099	-1194	-1537	-282

Outline

- Preliminaries
- Question(s) of Interest
- 4 Hedonic Model of Sorting
- Best Practices and Pitfalls
- Non-marginal Analysis
- Extensions

Alvin Murphy

Extensions: Salience

- Do agents perceive amenities correctly?
- Bishop, Kuminoff, Mathes, & Murphy (2024)
 - Get policy relevant price of mortality
- Bishop, Kuminoff, Murphy, & Price (2025)
 - Model/measure perceived amenity mapping
 - Combine with P(Z) to get MWTP

Extensions: Existence of Price Function

- Under what conditions does a price function exist?
 - Versus a correspondence
 - Bajari & Benkard (2005) give technical conditions for function
 - Asymetric information can cause a correspondence
 - Pope (2008), Kumbhakar & Parmeter (2010)

Extensions: Existence of Price Function

FIGURE 3 Incomplete Information and the Hedonic

Extensions: Moving Costs

- Frictions in mobility may bias inference
- Households may be at corner solution
 - Bajari & Kahn (2005): use recent movers

Extensions: Dynamics

- What if households forward-looking with respect to corner solutions?
- Dynamic behavior complicates static models
- The FOC for a household's optimal choice of Z is then given by:

$$P'(Z_{i,j}; \beta_j) = MWTP(Z_{i,j}; X_{i,j}, \alpha_j, \nu_{i,j}) + \partial E[V(Z_{t+1}|Z)]/\partial Z$$

• Bishop and Murphy (2011) show how to estimate full structural model

Extensions: Dynamics

- Bishop and Murphy (2019) show how forward-looking behavior affects inference
- Focus on the two ingredients in identifying MWTP at point of consumption
 - (Implicit) price of amenity
 - Quantity of amenity consumed
- Switch notation: x now denotes amenity
- ullet With forward-looking behavior, relevant amenity is future average, $ar{x}$
- Consider two cases:
 - $\bar{x} = x + c$
 - $\bar{x} = \rho x$

July 22, 2025

(a) The Housing Price Functions

(b) The Implicit Price Functions and Household i's MWTP

(b) The Implicit Price Functions and Household i's MWTP Below-Mean Choice of x^*

(c) The Implicit Price Functions and Household i's MWTP Above-Mean Choice of x^*

Connection to Discrete Choice

- Many view Hedonics and Discrete Choice models very distinctly
 - Hedonics reduced form; discrete choice is structural
 - Hedonics have price on the left; discrete choice has quantity on the left

Connection to Discrete Choice

- I disagree:
 - Both frameworks are revealed preference
 - In both frameworks, households demand amenities based on given prices
 - In hedonics, choice is continuous; in discrete choice it is discrete
 - A big deal?
 - In hedonics, price function must be estimated to reveal counterfactual price
 - In discrete choice, counterfactual prices are directly observed
 - In both cases, endogeneity is an issue to be dealt with

Hedonics and Sorting

- Thank you
- Questions?

References I

- Bajari, Patrick, and C. Lanier Benkard. 2005. "Demand Estimation with Heterogeneous Consumers and Unobserved Product Characteristics: A Hedonic Approach." Review of Economic Studies 72(2)
- Bajari, Patrick, and Matthew E. Kahn. 2005. "Estimating Housing Demand with an Application to Explaining Racial Segregation in Cities." *Journal of Business & Economic Statistics* 23(1)
- Banzhaf, H. Spencer. 2020. "Panel-Data Hedonics: Rosen's First Stage as a 'Sufficient Statistic,' "
 International Economic Review 61(2)
- Bartik, Timothy J. 1987. "The Estimation of Demand Parameters in Hedonic Price Models." *Journal of Political Economy* 95(1)
- Bayer, Patrick, Robert McMillan, Alvin Murphy, and Christopher Timmins. "A dynamic model of demand for houses and neighborhoods." Econometrica 84(3)
- Bishop, Kelly C., and Alvin D. Murphy. 2011. "Estimating the Willingness to Pay to Avoid Violent Crime:

A Dynamic Approach." American Economic Review: Papers & Proceedings 101(3)

◆ロト ◆園 ト ◆ 園 ト ◆ 園 ・ 夕 ♀ ○

86

References II

- ——. 2019. "Valuing time-varying attributes using the hedonic model: when is a dynamic approach necessary?." Review of Economics and Statistics 101(1)
- Bishop, Kelly C., Nicolai V. Kuminoff, Sophie Mathes, and Alvin D. Murphy. 2024. "The marginal cost of mortality risk reduction: Evidence from housing markets" *Journal of Urban Economics*, 139.
- Bishop, Kelly C., Nicolai V. Kuminoff, Alvin Murphy, and Michael Price. 2025. "Perceived vs Actual Amenities and Housing Prices." Working Paper.
- Bishop, Kelly C., and Christopher Timmins. 2018. "Using Panel Data to Easily Estimate Hedonic Demand Functions" *Journal of the Association of Environmental and Resource Economists* 5(3)
- — . 2019. "Estimating the marginal willingness to pay function without instrumental variables." *Journal of Urban Economics* 109

References III

- Black, Sandra E. 1999. "Do Better Schools Matter? Parental Valuation of Elementary Education."
 Quarterly Journal of Economics 114(2).
- Chay, Kenneth Y., and Michael Greenstone. 2005. "Does Air Quality Matter? Evidence from the Housing Market." *Journal of Political Economy* 113(2).
- Chetty, Raj, John N. Friedman, Nathaniel Hendren, Maggie R. Jones, and Sonya R. Porter. 2025 The
 opportunity atlas: Mapping the childhood roots of social mobility. *American Economic Review*, forthcoming
- Clapp, John M. 2004. "A Semiparametric Method for Estimating Local House Price Indices." *Real Estate Economics* 31(1).
- Court, Andrew T. 1939. "Hedonic Price Indexes with Automotive Examples." In The Dynamics of Automobile Demand. New York: General Motors.

88

References IV

- Davis, Lucas W. 2004 "The effect of health risk on housing values: Evidence from a cancer cluster." American Economic Review 94(5).
- Ekeland, Ivar, James J. Heckman, and Lars Nesheim. 2004. "Identification and Estimation of Hedonic Models." *Journal of Political Economy* 112(S1).
- Epple, Dennis. 1987. "Hedonic Prices and Implicit Markets: Estimating Demand and Supply Functions for Differentiated Products." *Journal of Political Economy* 95(1).
- Griliches, Zvi. 1961. "Hedonic Price Indexes for Automobiles: An Econometric Analysis of Quality Change." In *The Price Statistics of the Federal Government*. 173–196. NBER.
- Kumbhakar, Subal C., and Christopher F. Parmeter. 2010 "Estimation of hedonic price functions with incomplete information." Empirical Economics 39(1).

References V

- Kuminoff, Nicolai V., Christopher F. Parmeter, and Jaren C. Pope. 2010. "Which Hedonic Models Can We Trust to Recover the Marginal Willingness to Pay for Environmental Amenities?" *Journal of Environmental Economics and Management* 60(3).
- Kuminoff, Nicolai V., and Jaren C. Pope. 2012 "A novel approach to identifying hedonic demand parameters." *Economics Letters* 116(3).
- Lancaster, Kelvin J. 1966. Lancaster, Kelvin J. "A new approach to consumer theory." *Journal of Political Economy* 74(2).
- Rosen, Sherwin. 1974. "Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition."
 Journal of Political Economy 82(1).

References VI

- Tiebout, Charles M. 1956. "A Pure Theory of Local Expenditures." Journal of Political Economy 64(5).
- Walls, Margaret, Todd Gerarden, Karen Palmer, and Xian Fang Bak. "Is energy efficiency capitalized into home prices? Evidence from three US cities." *Journal of Environmental Economics and Management* 82.
- Waugh, Frederick V. 1929 Quality as a determinant of vegetable prices: a statistical study of quality factors influencing vegetable prices in the Boston wholesale market. Columbia University Press.
- Yinger, John. 2015a "Hedonic equilibria in housing markets: The case of one-to-one matching." *Journal of Housing Economics* 29.
- ——. 2015b. "Hedonic markets and sorting equilibria: Bid-function envelopes for public services and neighborhood amenities." *Journal of Urban Economics* 86
- Yinger, John, and Phuong Nguyen-Hoang. 2016 "Hedonic Vices: Fixing Inferences about Willingness to Pay in Recent House-Value Studies1." *Journal of Benefit-Cost Analysis* 7(2).

References VII

– Zabel, Jeffrey E., and Katherine A. Kiel. 2000. "Estimating the Demand for Air Quality in Four U.S. Cities." *Land Economics* 76(2).